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All the four stereoisomers of (1 S)-1-ethyl-2-methylpropyl 3,13-dimethylpentadecanoate, the major
component of the sex pheromone of Clania variegata, were synthesized by starting from (R)- or (S)-2-
methylbutan-1-ol, (R)- or (S)-citronellal, and (S)-2-methylpentan-3-ol. Olefin cross metathesis was
employed as the key reaction.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. Structure 1 of the major component of the sex pheromone of Clania
variegata.
1. Introduction

The Paulownia bagworm, Clania variegata Snell (Lepidoptera:
Psychidae), is a forest defoliator in managed forests in China. The
major component of its sex pheromone was reported to be (10S)-
1-ethyl-2-methylpropyl 3,13-dimethylpentadecanoate (1, Fig. 1)
by Gries et al.1 As to the absolute configuration of this ester 1, they
assigned S configuration to the alcohol part by synthesis of both
(10R)- and (10S)-1 and their field trapping experiments in China.1

The absolute configuration of the two remaining stereogenic cen-
ters of the carboxylic acid part of 1, however, has remained
unknown.

In continuation of our long-term studies on the absolute config-
uration of pheromones,2 we became interested in clarifying the
stereochemistry of the naturally occurring 1. The standard method
to achieve the goal is to synthesize all the possible stereoisomers of
1 and then to evaluate their pheromone activity. Usually the bio-
logically active stereoisomer of 1 can be regarded as the naturally
occurring 1.2 The ester 1 possesses four stereoisomers. We decided
to employ olefin cross metathesis reaction as the key step to syn-
thesize all the stereoisomers of 1 quickly without complication.3

Scheme 1 shows our retrosynthetic analysis of (3R,13R,10S)-1.
The ester 1 can be dissected to 3,13-dimethylpentadecane moiety
ll rights reserved.
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A and the alcohol moiety B. The olefinic acetate A might be synthe-
sized by cross metathesis of C with D, the two metathesis partners.
The optically active olefin C would be prepared from (R)-2-meth-
ylbutanoic acid (E) and 5-hexen-1-ol (F). Another metathesis part-
ner D would be obtainable from (R)-citronellal (G), and the alcohol
part B must be available via asymmetric synthesis. This synthetic
plan was put into practice as reported below.
2. Results and discussion

Synthesis of the metathesis partners, (R)-8 (=C) and (R)-12 (=D),
is summarized in Scheme 2. The starting material for (R)-8 was (R)-
2-methylbutanoic acid (2, T. Hasegawa Co., >99.0% ee), which was
obtained by treatment of (±)-2 with Pseudomonas sp. TH-252-1.4

Reduction of (R)-2 with lithium aluminum hydride gave alcohol
(R)-3, whose tosylate (R)-4 was treated with lithium bromide in
DMF to furnish (R)-2-methylbutyl bromide (5). The Grignard re-
agent prepared from (R)-5 and magnesium in THF was coupled with
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Scheme 1. Retrosynthetic analysis of (3R,13R,10S)-1.
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tosylate 7 (obtained by tosylation of commercially available 6) in
the presence of dilithium tetrachlorocuprate at �65 to �50 �C un-
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Scheme 2. Synthesis of the metathesis partners 8 and 12. Reagents: (a) LiAlH4,
Et2O; (b) TsCl, C5H5N (51% for 7); (c) LiBr, DMF [63% based on (R)-2, 3 steps]; (d) (i)
(R)-5, Mg, THF ; (ii) 7, THF, Li2CuCl4 [42% based on (R)-5 or 66% based on 7]; (e)
Ac2O, DMAP, C5H5N (82%).
der the Schlosser conditions5 to give (R)-8, bp 94–96 �C/48 Torr,
½a�27

D � 11:0 (c 3.40, pentane), in 42% yield based on (R)-5. Its GC–
MS analysis revealed it to be a 91.2:8.8 mixture of (R)-8 and
(3R,6R)-9. The latter must have been generated in the course of
the preparation of the Grignard reagent. Similarly, commercially
available (S)-3 (Tokyo Kasei) afforded (S)-8, bp 110–115 �C/65 Torr,
½a�26

D þ 10:6 (c 3.50, pentane), as a 93:7 mixture of (S)-8 and (3S,6S)-
9. The enantiomeric purity of (R)-8 was >98.0% ee, while that of (S)-
8 was 99.0% ee as determined by their GC analysis.6 The overall
yield of (R)-8 was 26% based on (R)-2 (4 steps), while that of (S)-8
was 22% based on (S)-3 (3 steps).

The other partners of metathesis, (R)- and (S)-12, were prepared
by acetylation of (R)- and (S)-11. These alcohols (R)- and (S)-11,
respectively, were synthesized from the enantiomers of citronellal
(10, Takasago International Corporation, both 97% ee), and em-
ployed as intermediates in the synthesis of the pheromone of an
Okinawan moth, Lyclene dharma dharma.8 Their enantiomeric puri-
ties were 97.2% ee for both (R)-12, bp 130–134 �C/80 Torr, ½a�26

D

+1.53 (c 3.41, Et2O) and (S)-12, bp 122–125 �C/60 Torr, ½a�25
D

�1.36 (c 3.12, Et2O).9 The overall yield of (R)-12 was 46% based
on (R)-10 (7 steps), and that of (S)-12 was 45% based on (S)-10 (7
steps).

Scheme 3 shows the synthesis of the key acid (3R,13R)-17 via
the crucial step of olefin cross metathesis.10–13 Because (R)-8 could
be prepared in shorter four steps than (R)-12 (7 steps), 10 equiv of
(R)-8 was mixed with 1 equiv of (R)-12 in dichloromethane. In the
presence of 5 mol % [based on (R)-12] of Grubbs’ first generation
catalyst, the mixture was stirred and heated under reflux for 6 h
under argon. Chromatographic purification of the product first
gave (3R,16R)-14 [50% yield based on (R)-8] and then (3R,13R)-13
contaminated with (3R,10R)-15 in 88% yield based on (R)-12. Since
complete removal of 15 from crude 13 was difficult, the crude
(3R,13R)-13 was subjected to alkaline hydrolysis and hydrogena-
tion over 10% palladium–charcoal. Subsequent chromatographic
purification gave (3R,13R)-16, ½a�25

D � 2:12 (c 7.64, hexane), in 53%
yield based on the crude (3R,13R)-13 (2 steps). Oxidation of
(3R,13R)-16 with Jones chromic acid afforded the desired acid
(3R,13R)-17, ½a�24

D � 0:34 (c 1.39, CHCl3), in 75% yield. The overall
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Scheme 3. Synthesis of the acid (3R,13R)-17. Reagents: (a) Grubbs I [ca. 5 mol %
based on (R)-12], (R)-8/(R)-12 = ca. 10:1 in CH2Cl2, reflux, 6 h [88% based on (R)-12];
(b) NaOH, MeOH, aq THF, reflux, 1 h (92%); (c) H2, 10% Pd–C, EtOH, then SiO2

chromatog. (58%); (d) Jones CrO3, acetone (75%).
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[83% based on (3R,13R)-17].
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yield of (3R,13R)-17 was 35% based on (R)-12 (4 steps). Other ster-
eoisomers of the acid 17 could be synthesized in the same manner.

The next task was the synthesis of (S)-2-methylpentan-3-ol
(20). Gries et al. previously prepared (S)-20 by kinetic resolution
of (±)-4-methyl-1-penten-3-ol by Sharpless asymmetric epoxida-
tion.1 As shown in Scheme 4, we synthesized (S)-20 by asymmetric
reduction of 4-methyl-1-pentyn-3-one (19) to (R)-18 with Brown’s
(R)-Alpine-Borane�14 as the key step. Commercially available (±)-
4-methyl-1-pentyn-3-ol (18) was oxidized with Jones chromic acid
to give ketone 19. This was reduced with (R)-Alpine-Borane� to
give highly volatile (R)-18, bp 119–121 �C, ½a�25

D � 0:96 (c 1.37,
CHCl3), in 47% yield. The enantiomeric purity of (R)-18 was esti-
mated as 96% ee by HPLC analysis of the corresponding benzoate
(R)-22.15 Hydrogenation of (R)-18 over 10% palladium–charcoal
in pentane afforded a 2:1 mixture of (S)-20 and 21. After chromato-
graphic purification, highly volatile and pure (S)-20, bp 104–
106 �C, ½a�25

D � 14:0 (c 1.10, CHCl3), ½a�25
D � 20:1 (c 1.16, EtOH), Ref.

16 ½a�23
D � 16:9 (c 0.39, EtOH), could be secured in 16% yield. Its

enantiomeric purity was estimated as 94.2% ee by GC analysis of
the corresponding (R)-MTPA ester 23.17
The final step as depicted in Scheme 5 was the esterification of
the four stereoisomers of the acid 17 with (S)-20. 1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDC, 1.6
equiv) was added to a solution of (3R,13R)-17 (1 equiv), (S)-20
(2 equiv), and 4-(N,N-dimethylamino)pyridine (DMAP, 1.9 equiv)
in dichloromethane to give (3R,13R,10S)-1 as an oil, ½a�23

D �5.38 (c
1.30, CHCl3), in 83% yield. Its 1H and 13C NMR data18 are in good ac-
cord with those published for (3RS,13RS,10S)-1.1 The MS of
(3R,13R,10S)-118 was also in accord with that of the naturally occur-
ring pheromone component 1.1 Similarly, we synthesized (3R,
13S,10S)-1, ½a�23

D +1.63 (c 1.32, CHCl3), (3S,13R,10S)-1, ½a�23
D �10.8 (c

1.31, CHCl3), and (3S,13S,10S)-1, ½a�23
D �3.42 (c l.20, CHCl3). The

spectral data of these four isomers of 1 were virtually indistin-
guishable.18 The overall yield of (3R,13R,10S)-1 was 13% based on
(R)-10 (12 steps).

3. Conclusion

We synthesized all of the four stereoisomers of (10S)-1-ethyl-2-
methylpropyl 3,13-dimethylpentadecanoate (1), the major compo-
nent of the sex pheromone of C. variegata. Future bioassay of these
four stereoisomers of 1 will hopefully clarify the absolute configu-
ration of the naturally occurring and bioactive component 1. Olefin
cross metathesis has been shown to be a useful reaction in phero-
mone synthesis, especially when a set of stereoisomers has to be
prepared quickly and efficiently.
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